
Breaking LMAP ?

Mihály Bárász1, Balázs Boros1, Péter Ligeti1,2, Krisztina Lója1,3, Dániel
A. Nagy1

1 ELTECRYPT Research Group
Department of Computer Science, Eötvös University
1117 Budapest, Pázmány Péter sétány 1/c, Hungary

2 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
1053 Budapest, Reáltanoda u. 13-15, Hungary

3 Department of Telecommunications and Telematics,
Budapest University of Technology and Economy
1117 Budapest, Magyar Tudósok krt. 2, Hungary

Abstract. In this paper, we present a passive attack resulting the com-
plete break of LMAP (Lightweight Mutual Authentication Protocol),
which is an authentication protocol between RFID tags and RFID read-
ers. We describe an algorithm that breaks the protocol after eavesdrop-
ping a few consecutive rounds of communication. Assuming that the at-
tacker can eavesdrop successive authentication rounds of the same RFID
tag, after a small number of rounds (the expected number is about 10) the
attacker learns the identification number of the tag and every common
secret shared by the tag and the reader. This means that in the sub-
sequent rounds the attacker can successfully impersonate the targeted
tag.
Keywords: RFID, Tag, Reader, Mutual Authentication, LMAP, Passive
Attack

1 Introduction

In a mutual authentication protocol for RFID applications, the goal is to prevent
unauthorized readers from reading some or all information stored in the RFID
tags, while providing authorized readers with the capability of distinguishing
between authorized and unauthorized tags. The security of such a protocol de-
pends on the costs that it imposes on potential attackers that might want to
impersonate either tags or readers without being authorized to do so.

In the particular case of LMAP, Peris-Lopez et al. [1] propose a protocol
in which authorization is provided by a common secret shared by authorized
readers and tags. The goal of reader authentication is to prevent unauthorized
readers from reading the identification number of authorized tags. Note that for
some applications this is not sufficient: in military applications, authorized tags
must not respond to unauthorized readers at all.

? This research was partially supported by Jedlik Ányos Program NKFP2-00027/2005,
and MIK Grant



LMAP sets forth the very attractive, but also very challenging goal of low
complexity in tags while maintaining adequate levels of security. It refrains from
using traditional cryptographic primitives, doing just elementary arithmetics in
tags. While we do not claim that this ambitious goal cannot be achieved, in this
paper we demonstrate that LMAP certainly falls short of achieving it.

Li and Wang [2] have pointed out some weaknesses of LMAP. The authors
show two kinds of active attacks against the protocol. The first one is able to
de-synchronize the communication between the tag and the reader, the second
one is a man-in-the-middle attack which is able to get the whole secret key of
the tag after a de-synchronization phase.

In this paper, we show a fully passive attack against the protocol, which is
able to get all the secret information stored in the tag only by eavesdropping a
few consecutive rounds of the protocol. The rest of this paper is organized as
follows. In Section 2, we introduce the LMAP protocol of Peris-Lopez et al [1].
In Section 3, we point out the main weaknesses of the protocol. In Section 4 we
present our passive attack step by step. In Section 5, we give some supplements to
the previous section. In Section 6, we briefly introduce the active attack against
LMAP based on [2], and offer remarks on it. Finally, in Section 7, we summarize
our results.

2 The Protocol

We give a brief introduction to LMAP. For more details, please refer to [1]. Each
tag has a unique identification number (ID) that never changes. Also, each tag
has an index-pseudonym (IDS) and four keys (K1, K2, K3 and K4) that must
be updated after every authentication round. Before each authentication, the
reader generates two random numbers (n1 and n2). We will consider only the
case of one tag. The protocol uses bitwise XOR (⊕), bitwise OR (∨) and addition
modulo 296 (+).

K1,K2,K3,K4, ID, IDS, n1, n2 are vectors of 96 bits. The nth round of the
protocol consists of the following four steps:

1. Tag Identification

READER → hello→ TAG

READER ← IDS(n) ← TAG

After receiving a hello message from the reader, the tag sends its actual
IDS to the reader. By means of IDS, the reader will be able to access the
tag’s secret keys (K1,K2,K3 and K4). Furthermore, the reader is also able
to access the tag’s ID.

2. Reader Authentication

READER → A(n) := IDS(n) ⊕K
(n)
1 ⊕ n

(n)
1 → TAG



READER → B(n) := (IDS(n) ∨K
(n)
2 ) + n

(n)
1 → TAG

READER → C(n) := IDS(n) + K
(n)
3 + n

(n)
2 → TAG

From message A, the tag can calculate the random value denoted by n1.
Knowing n1, the tag can also calculate message B and if it is the same
as message B received from the reader, the tag establishes that the reader
knows K1 and K2. Thus, the authentication of the reader is ready. From
message C, the tag can calculate the random number n2.

3. Tag Authentication

READER ← D(n) := (IDS(n) + ID)⊕ n
(n)
1 ⊕ n

(n)
2 ← TAG

Once these verifications are performed, the tag will generate answer message
D to authenticate and transmit its static identifier in a secure form.

4. Updating the values of IDS,K1,K2,K3 and K4

IDS(n+1) := (IDS(n) + (n(n)
2 ⊕K

(n)
4 ))⊕ ID

K
(n+1)
1 := K

(n)
1 ⊕ n

(n)
2 ⊕ (K(n)

3 + ID)

K
(n+1)
2 := K

(n)
2 ⊕ n

(n)
2 ⊕ (K(n)

4 + ID)

K
(n+1)
3 := (K(n)

3 ⊕ n
(n)
1 ) + (K(n)

1 ⊕ ID)

K
(n+1)
4 := (K(n)

4 ⊕ n
(n)
1 ) + (K(n)

2 ⊕ ID)

After successful mutual authentication, the tag and the reader also update
the index-pseudonym and the four secret keys.

3 Weaknesses

Every bit affects only the bits which are to the left from that given bit. Hence,
each bit depends only on bits with the same or bigger indices. In particular,
the least significant bits are independent of every other bit. This is so because
LMAP uses only bitwise operations and addition modulo 296.

Taking into account only the least significant bits, XOR operation and addi-
tion modulo 296 are the same. We can use this observation to deduce the least
significant bits. In subsection 4.1 we do not take difference between ⊕ and +.

The bitwise OR operation in message B is another weak point of the protocol.
From message B, one can easily gain information about the random number n1,
especially with the help of the set bits of IDS.

The addition modulo 296 poses no difficulty if we know every bit on the right
hand side.



4 The steps of breaking the LMAP

Let us denote the kth bit of M in round n by [M (n)]k for M ∈ {A,B, C, D, K1,

K2, K3,K4, IDS, n1, n2}. For example, [K(n)
1 ]96 is the least significant bit of key

K1 in round n. [ID]k will mean the kth bit of ID in any of the rounds, since
this is a constant sequence of bits.

Since every information is communicated via an insecure public radio chan-
nel, after round n, IDS(n) and messages A(n), B(n), C(n), D(n) are known to the
attacker eavesdropping the communication between the tag and the reader. We
will denote the bits just obtained by underlining them (e.g. [n(n)

1 ]k).
The attacker will need to eavesdrop a few consecutive rounds of authentica-

tion of the same tag. First, we summarize the steps of our attack, afterwards we
explain the steps precisely.

First, the attacker calculates the least significant bits of every key and secret.
It is easy because the XOR operator and the addition mod 296 are the same with
respect to the least significant bits. The only necessary thing is that the least
significant bit of IDS could be a set bit. If this is not the case, the attacker
simply waits for another round of authentication.

Once the attacker receives an IDS ending with a set bit, after two more
rounds, the least significant bits of all the unknowns in all eavesdropped rounds
get revealed (to the attacker). The next step is to calculate the bits immediately
before the least significant ones with the knowledge of the latter. At this point,
the attacker will be able to set up the equations using just XOR, without addition
mod 296.

Thus, step by step the attacker will learn all the bits from the least significant
ones to the most significant ones. The attacker needs to eav esdrop r rounds such
that for every k: [IDS(n)]k∨ [IDS(n+1)]k∨ [IDS(n+2)]k∨· · ·∨ [IDS(n+r−1)]k = 1
and two more rounds for calculating the bits where the IDS in rounds n, n + 1,
. . . , n+r−2 are 0 and become 1 in round n+r−1, see more precisely in Section
5.

4.1 The Least Significant Bits

Let us assume that [IDS(n)]96 = 1. This implies that [IDS(n)]96 ∨ [K(n)
2 ]96 = 1.

From message B, the attacker can compute [n(n)
1 ]96:

[n(n)
1 ]96 = [B(n)]96 ⊕ 1.

From message A she can get [K(n)
1 ]96:

[K(n)
1 ]96 = [A(n)]96 ⊕ [n(n)

1 ]96 ⊕ 1.

From message C and D she can get [K(n)
3 ]96 ⊕ [n(n)

2 ]96 and [ID]96 ⊕ [n(n)
2 ]96,

respectively:
[K(n)

3 ]96 ⊕ [n(n)
2 ]96 = [C(n)]96 ⊕ 1,



[ID]96 ⊕ [n(n)
2 ]96 = [D(n)]96 ⊕ [n(n)

1 ]96 ⊕ 1.

From the above two equalities, she can get [ID]96 ⊕ [K(n)
3 ]96:

[ID]96 ⊕ [K(n)
3 ]96 = [C(n)]96 ⊕ [D(n)]96 ⊕ [n(n)

1 ]96.

We assume that the attacker is able to eavesdrop more rounds of authentica-
tion, one after the other, so after round n + 1, the attacker also knows the least
significant bits of IDS(n+1), A(n+1), B(n+1), C(n+1) and D(n+1) as well. From
the definition of updating the index-pseudonym, she can obtain [K(n)

4 ]96:

[K(n)
4 ]96 = [IDS(n+1)]96 ⊕ [IDS(n)]96 ⊕ ([ID]96 ⊕ [n(n)

2 ]96).

Considering the equation of message C(n+1) and the updating formula of K3,
she can obtain [n(n+1)

2 ]96:

[n(n+1)
2 ]96 = [K(n+1)

3 ]96 ⊕ [IDS(n+1)]96 ⊕ [C(n+1)]96 =

=
(
[n(n)

1 ]96 ⊕ [K(n)
1 ]96 ⊕ ([K(n)

3 ]96 ⊕ [ID]96)
)
⊕ [IDS(n+1)]96 ⊕ [C(n+1)]96.

Considering the updating formula of K4 and IDS, she can obtain [K(n)
2 ]96:

[K(n)
2 ]96 = [K(n)

4 ]96 ⊕ [n(n)
1 ]96 ⊕ [K(n+1)

4 ]96 ⊕ [ID]96 =

= [K(n)
4 ]96 ⊕ [n(n)

1 ]96 ⊕ ([IDS(n+2)]96 ⊕ [IDS(n+1)]96 ⊕ [n(n+1)
2 ]96 ⊕ [ID]96)⊕

⊕[ID]96 = [K(n)
4 ]96 ⊕ [n(n)

1 ]96 ⊕ [IDS(n+2)]96 ⊕ [IDS(n+1)]96 ⊕ [n(n+1)
2 ]96.

Now she can calculate [K(n+1)
2 ]96 by the respective updating formula:

[K(n+1)
2 ]96 = [K(n)

2 ]96 ⊕ [n(n)
2 ]96 ⊕ [K(n)

4 ]96 ⊕ [ID]96.

From message B she can obtain [n(n+1)
1 ]96:

[n(n+1)
1 ]96 = [B(n+1)]96 ⊕ ([IDS(n+1)]96 ∨ [K(n+1)

2 ]96.

Now, from message D she can obtain [ID]96:

[ID]96 = [D(n+1)]96 ⊕ [IDS(n+1)]96 ⊕ [n(n+1)
1 ]96 ⊕ [n(n+1)

2 ]96.

From the message D she can get [n(n)
2 ]96:

[n(n)
2 ]96 = [ID]96 ⊕ [n(n)

1 ]96 ⊕ [D(n)]96 ⊕ 1.

And finally, from message C she can get [K(n)
3 ]96:

[K(n)
3 ]96 = [C(n)]96 ⊕ [n(n)

2 ]96 ⊕ 1.



In this subsection we have pointed out the following: if the eavesdropper
knows the least significant bits of IDS(n), A(n), B(n), C(n), D(n), IDS(n+1),
A(n+1), B(n+1), C(n+1), D(n+1) and IDS(n+2) and in addition [IDS(n)]96 = 1,
then she can obtain the least significant bits of the secrets in the nth, (n +
1)th and (n + 2)th round of the protocol by using the above equations and the
updating formulas. In addition, if she eavesdrops the (n+3)th protocol run, then
she will be able to determine n

(n+3)
1 , n

(n+3)
2 and also the keys in the (n + 4)th

round of the protocol, since she knows everything that the tag knows, and so
on. If [IDS(n)]96 = 0, then the attacker needs to wait for another round of the
protocol. She can use the above described method, if [IDS(n+s)]96 = 1 for some
s ∈ N. The only thing she needs to do is write n + s everywhere instead of n.

The following remark is very simple, but important: if [IDS(n+1)]96 = 1, then
the attacker can obtain the least significant bits of every secret also in round
n. In this case she can obtain the least significant bits of every secret in round
n + 1. We do not go into the details, but she can use the following equations:

[K(n)
3 ]96 = [K(n+1)

3 ]96 ⊕ ([n(n)
1 ]96 ⊕ [K(n)

1 ]96)⊕ [ID]96,

[n(n)
2 ]96 = [C(n)]96 ⊕ [IDS(n)]96 ⊕ [K(n)

3 ]96,

[K(n)
4 ]96 = [IDS(n+1)]96 ⊕ [IDS(n)]96 ⊕ [n(n)

2 ]96 ⊕ [ID]96,

[K(n)
2 ]96 = [K(n+1)

2 ]96 ⊕ [n(n)
2 ]96 ⊕ [K(n)

4 ]96 ⊕ [ID]96,

[n(n)
1 ]96 = [D(n)]96 ⊕ [IDS(n)]96 ⊕ [n(n)

2 ]96 ⊕ [ID]96,

[K(n)
1 ]96 = [A(n)]96 ⊕ [IDS(n)]96 ⊕ [n(n)

1 ]96.

Clearly, the above remark also holds for n + s− 1 and n + s instead of n and
n + 1.

4.2 The bits immediately before the least significant ones

By using the method described in the previous subsection, the attacker will
determine the 95th bits.

The attacker can set up all of the equations for the 95th bits by using the
96th bits. The main point is that the attacker can handle the addition modulo
296 for the kth bit if she knows the jth bits of the addends for every k < j ≤ 96.
For example, if [IDS(n)]96 ∧ [ID]96 = 1 then the equation of [D(n)]95 gets the
following form:

[D(n)]95 = [IDS(n)]95 ⊕ [ID]95 ⊕ [n(n)
1 ]95 ⊕ [n(n)

2 ]95 ⊕ 1.



Let us assume that [IDS(n)]95 = 1. In this case, the attacker can obtain the
bit [n(n)

1 ]95 from message B, and after that she can calculate everything with the
same method as in the previous subsection, and she does not need to eavesdrop
other runs of the protocol, the so far eavesdropped messages are sufficient.

Now let us assume that [IDS(n)]95 = 0 and [IDS(n+1)]95 = 1. In this case,
the attacker needs to eavesdrop one more run of the protocol. Precisely, she has
to eavesdrop the nth, (n + 1)th and (n + 2)th protocol run and IDS(n+3). After
that she is again able to use the same method as in the previous subsection, and
can get the values of the keys in the (n + 1)th, (n + 2)th and (n + 3)th rounds.
In addition, she can get the values of the keys in round n. For example, she can
obtain [K(n)

3 ]95 with the help of [K(n+1)
3 ]95, [K(n)

1 ]95⊕ [n(n)
1 ]95 and [ID]95. After

that she can obtain [n(n)
1 ]95 from message [C(n)]95, [IDS(n)]95 and [K(n)

3 ]95, and
so on.

4.3 More significant bits

Clearly, the attacker can derive all the secrets by the same method as she ob-
tained the least significant bits and the bits immediately before the least signif-
icant bits. The only thing she needs is a set bit in IDS. In this subsection we
formalize this sentence precisely and in Section 5, we add more explanation.

If p and q are fixed integers then, for the sake of simplicity, we use the
following notation:

[p, q] := {l ∈ Z|p ≤ l ≤ q}.

Let us denote the following random variable, which is non-negative and has
integer values, by r:

r := inf{r0 ∈ N|∀ k ∈ [1, 96] ∃ i ∈ [0, r0 − 1] : [IDS(n+i)]k = 1}.

Taking into account all the findings of Section 4, the attacker can consider
that after eavesdropping r + 1 consecutive runs of the protocol (note that r
is a random variable) and IDS(n+r+1) (the next IDS), she can obtain all the
originally unknown parameters. Namely, all elements of the following set:{

M (n+i) ∈ {0, 1}96|M ∈ {K1,K2,K3,K4, n1, n2, IDS}, i ∈ [0, r + 1]
}⋃
{ID}.

This means that the attacker knows all the information contained by the tag.
Thus, she can also update IDS and the secret keys. With this knowledge, she
can fully impersonate the tag in the (n + r + 2)th round of the protocol. The
tag no longer has any secret unknown to the attacker. In Section 5, we provide
more details about the random variable r.

5 Supplement

In this section, we calculate the distribution and the expected number of random
variable r introduced in the previous section.



We can assume the following (supposing that the nth run of the protocol is
not the first one):

P({[IDS(n)]k = 0}) = P({[IDS(n)]k = 1}) = 1/2 (∀ k ∈ [1, 96]).

The above equation holds, because the updating of the index-pseudonym
contains n2 and we can make the following assumption: n2 is uniformly chosen
from {0, 1}96. Of course the same holds for n+i instead of n, where i ∈ N. Under
these assumptions, we can evaluate the expected value of r. For this purpose,
we introduce random variables: rj (j ∈ [1, 96]), such that

rj := inf{r0
j ∈ N|[IDS(n+r0

j−1)]j = 1}.

With this definition, we get the following:

r = max{rj |j ∈ [1, 96]}.

It is easy to show that P({rj ≤ k}) = 1 − 1
2k for any k ∈ N and for any

j ∈ [1, 96], because rj ’s have geometric distribution with parameter 1
2 . Since rj ’s

are iid, we obtain the following equations for any integer k ∈ N:

P({r ≤ k}) = P({rj ≤ k,∀ j ∈ [1, 96]}) =
96∏

j=1

P({rj ≤ k}) =
(
1− 1

2k

)96

.

From the above equations, we can compute the probability P({r = k}) for
k ∈ N:

P({r = k}) = P({r ≤ k})−P({r ≤ k − 1}) =
(
1− 1

2k

)96

−
(
1− 1

2k−1

)96

.

Finally, we can obtain the expected value of r, calculating the following sum:

E(r) =
∞∑

k=1

k

((
1− 1

2k

)96

−
(
1− 1

2k−1

)96
)

.

We can calculate the sum numerically, it will be about 7.93.

k 1 2 3 4 5 6 7

P({r=k}) < 10−28 < 10−11 < 10−5 < 10−2 0.05 0.17 0.25

k 8 9 10 11 12 13 14

P({r=k}) 0.22 0.14 0.08 0.04 0.02 0.01 < 10−2

Table 1. Distribution of r

The distribution of the random variable r is presented in Table 1.



6 Active Attack Against LMAP by Li and Wang

Li and Wang have presented an active attack against LMAP. In this subsection
we mention some of the main points of that paper. For more details, please refer
to [2].

The authors have introduced the following two attacks: De-synchronization
Attack and Full Disclosure Attack. In this paper we do not deal with the first
one, only with the second one.

First, the authors remark that the tag does not know if D is indeed received
or verified by a legitimate reader. This can cause difference between the storage
of the tag and the reader, so they can fall out of synchronization. To avoid this
problem, they suppose there is a completion message being sent to each other
to indicate a successful completion of the protocol.

The authors also take the following supposition: the tag has no memory for
status information (therefore it is considered stateless), but a legitimate reader
is stateful (as to remember all status information regarding the protocol with a
specific tag). This means that one can repeatedly run the incomplete protocol
many times at the tag side. This assumptions is reasonable as the tag has to
answer any request by legitimate or illegitimate readers, and the protocol is not
complete if the reader did not send completion message to the reader.

After taking these assumptions, we mention some details about the Full Dis-
closure Attack. Under the assumption that the tag is stateless, they can in-
terrogate the tag many times. It means that they can send the tag A, B, C
triplets many times. They send exactly 96 different such triplets, and according
to whether a proper D or an error message is received, the attacker concludes
one bit of n1. So after this step the attacker will know n1. The authors claim
that from A, B, IDS and n1, the attacker can calculate K1 and K2. However,
one cannot get K2, only ”half of K2”.

The next step is obtaining ID. To this aim, they interact once again with the
reader and the tag also. After these interactions, one need to solve the following
equation:

x⊕ a = x⊕ b + c mod 296,

where a, b, c ∈ {0, 1}96 are known vectors and x ∈ {0, 1}96 is unknown. If the
attacker get x, then she can easily calculate ID. But it is important to remark
that there is no guarantee for the uniqueness of solution x. The authors suggest
a trivial way to solve this equation, but that requires too much computing time.
They also mention the paper of Lipmaa and Moriai [3], where a method is given
for solving the equation in complexityO(m), where m is the length of the vectors,
so in our case m = 96. The authors claim that if there are more than one possible
ID, then one can repeat the whole attack later and can get other possible values
for ID. Of course, the real ID satisfies all of the occurrent equations. Once the
value of ID is fixed, one can easily obtain K3 and K4. The latter from the next
IDS. But that is not clear how they can derive the ”missing half of K2”.



7 Conclusions

We have given a constructive proof that LMAP is weak and can be broken.
First, we have shown that assuming that the least significant bit of IDS(n) is
a set bit, the attacker is able to calculate the least significant bits of every key
and secret of round n after eavesdropping the communication between the tag
and the reader in rounds n, n + 1 and n + 2. We have shown that assuming
[IDS(n)]k = 1 and bits k + 1, k + 2, . . . , 96 of every key and secret are known,
the attacker can obtain the kth bits of every key and secret if the communication
between the tag and the reader in rounds n, n + 1 and n + 2 are eavesdropped.

It obviously follows that knowing the kth bits in round n and every bit
between k+1 and 96 in rounds n, n+1, . . . , n+s, one can calculate the kth bits
in n + 1, n + 2, . . . , n + s. We have shown that the attacker can also calculate
the bits between k and 96 in rounds n, n + 1, . . . , n + s− 1 with the knowledge
of the bits between k and 96 in round n + s.

We also have shown that the expected number of rounds need to eavesdrop
is about 10.

From a broader perspective, our paper once again demonstrates that var-
ious “proofs of security” based on statistical pseudo-random properties of the
messages available for eavesdropping are meaningless. Such properties are nei-
ther sufficient nor necessary for the security of a communication system in any
meaningful sense.

When demonstrating the (computational) security of a system, researchers
should show that the ability to breach it implies the ability to solve a compu-
tational problem that is believed to be infeasible, which is of course a condition
upon which the security assumption depends. In some cases, it is possible to
prove security unconditionally by demonstrating that the mutual information
between the observable and the secret parameters equals zero.

Our passive attack is robust in the sense that it uses only eavesdropping, so
we do not have to take any technical assumption about the protocol, carrying
out the attack is possible under the correct working of the protocol.

References

1. P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, A. Ribagorda:
LMAP: A Real Lightwight Mutual Authentication Protocol for Low-cost RFID
tags. Proceedings of RFIDSec06 Workshop on RFID Security, 12-14 July, Graz,
Austria, (2006)

2. T. Li, G. Wang: Security Analysis of Two Ultra-Lightweight RFID Authentication
Protocols. IFIP SEC 2007, 14-16 May, Sandton, Gauteng, South Africa, (2007)

3. H. Lipmaa, S. Moriai: Efficient Algorithms for Computing Differential Properties
of Addition. Proceedings of FSE ’01, LNCS 2355 (2001) 336–350.


