
Persistent Security for RFID

Mike Burmester and Breno de Medeiros

Computer Science Department
Florida State University
Tallahassee, FL 32306

{burmeste,breno}cs.fsu.edu

Abstract. Low-cost RFID tags are being deployed to support smart environment
and other ubiquitous applications, and in particular to provide security and in-
tegrity functions within this domain. While the tags themselves are often dis-
cardable and easily replaced, they are embedded into a long-lasting computing
infrastructure. As such, RFID security requirements may include persistence that
extends beyond the lifetime of the devices.
In this paper, we discuss security mechanisms that can be used to achieve last-
ing security for RFID applications. The basic requirements for security include:
availability (resistance against disabling attacks), authentication (unforgeability,
freedom from replay attacks), and for some applications, privacy (anonymity).
Additionally, for persistent security, forward-secrecy is desirable or needed. We
discuss mechanisms that can be analyzed within a formal security model that
allows for concurrent and composable executions. Naturally, emphasis is also
placed in the practical aspects of the solutions, considering the unique character-
istics of this technology.

1 Introduction

Radio Frequency Identification (RFID) tags are being massively deployed in several
application and business domains to provide limited environmental awareness to com-
puter systems. This in turn allows automation and streamlining of previously labor-
intensive control processes, such as access control, authentication, shipment tracking,
inventory and logistics, payment, etc. In addition to track and identifying goods, sup-
plies, and equipment, some of these deployments are used to track and identify people,
for instance RFID-enabled passports, air tickets, and implanted medical devices. Busi-
ness increasingly use RFIDs to extract intelligence from operations that can contribute
to their competitiveness and efficiency (e.g., the newly proposed Walmart initiative to
track recyclable components). Finally, RFIDs are increasingly being considered for con-
venience and added-value applications for users.

As business, government, and consumer applications become more dependent on
RFID-provided data for the integrity of their configuration and management, the func-
tional integrity of the RFID tags becomes a critical requirement. While much attention
by researchers has focused on the efficiency, authentication, and privacy aspects (all
fundamental concerns), it is also important to support availability—so that tags remain
valid components for the duration of their projected life-time—and forward-security.

The latter may not appear at first an important requirement for RFIDs, with their limited
life-cycle spans. However, in the measure that RFIDs are components of larger, persis-
tent systems, it becomes important to look at the overall picture and consider whether
it is important for the system to tolerate events such as key-compromise of RFID tags.

In this paper we describe a security formalization approach that can guarantee si-
multaneous modeling and provision of the multiple security requirements that charac-
terize realistic RFID usage. This approach is simulation-based and guarantees security
under concurrent executions and in composition with other applications/ protocols. We
also describe highly efficient protocols that are provable security within this framework.

1.1 Previous work

The research literature in RFID security, including anonymous authentication protocols,
is already quite extensive and growing—for reference, a fairly comprehensive reposi-
tory is available online at [1]. However, few works on RFID protocols consider security
in a unified model (for examples, see [2, 3]), in addition to [4]. We note that Juels and
Weiss [5] propose an alternative anonymity definition following a traditional adversary-
game approach (i.e., without consideration for composability issues).

In this paper, we define security in terms of indistinguishability between real and
ideal protocol simulations, an approach first outlined by Beaver [6–8], and extended by
Canetti as the universal composability framework [9–11]. A similar approach has also
been pursued by Pfitzmann and Waidner [12, 13], under the name reactive systems.

2 Security Context in RFID

It is well recognized that the greatest challenge in the provision of integrity and other
security services for RFIDs rests on the scarcity of resources available in this computing
platform. RFID protocols must consequently be lightweight and restrict themselves to
the constraint envelope defined by limitations on the available power (induced by the
antenna), the computational capabilities (number of cycles/second), the memory size
(typically a few hundred to a few thousand bits) and the IC design (the number of gates).
In particular, most RFID platforms can only implement highly optimized symmetric-
key cryptographic techniques.

While recognizing the significant (and even fundamental) challenges of securing
RFIDs from physical attacks, such as jamming, collision, and side-channel exploitation
attacks—see, for instance the electromagnetic emanations/power consumption attacks
demonstrated by Oren and Shamir [14]—we chose to focus on the protocol layer.

A important concern in our solution design is to accommodate features of the RFID
application space. Modularity of security is important because RFIDs are components
of larger applications and solutions, and therefore protocols for RFID should ideally
be analyzed for security in a composable framework that allows for re-usability within
different container environments. Similarly, RFID applications are designed for large
scale concurrency—e.g., readers are designed to simultaneously engage with hundreds
of tags, as specified in the latest standards [15, 16]—so it is important to consider con-
currency issues that might affect security. We achieve this type of security by formal-
izing and analyzing the security of protocols within the universal composability (UC)

framework, proposed by Canetti [9–11]. There are several RFID protocols that achieve
this level of security by using lightweight cryptographic mechanisms [17, 4]. We shall
discuss these in more detail in the following sections.

2.1 RFID system entities

An RFID system involves at least three types of entities, namely tags, readers and
back-end servers. The tags are attached to, or embedded in, objects to be identified.
They consist of a transponder and an RF coupling element. The coupling element has
an antenna coil to capture RF power, clock pulses and data from the RFID reader. The
readers typically contain a transceiver, a control unit and a coupling element, to inter-
rogate tags. They implement a radio interface to the tags and also a high level interface
to a back-end server that processes captured data. The back-servers are trusted entities
that maintain a database containing the information needed to identify tags, including
their identification numbers, and if symmetric cryptographic primitives are employed,
also cryptographic keys shared with the tags. Since the integrity of an RFID system is
entirely dependent on the proper behavior of the server, it is assumed that the server is
physically secure and not attackable.

In the symmetric cryptographic model, the central server can often trace and cor-
relate all activities involving the tags. This can raise privacy concerns for the users
of RFID systems, who may be wary of centralized monitoring by the operator of the
central server. Correspondingly, research efforts have been dedicated to the design of
privacy mechanisms that reduce the trust on the back-end server—for instance, to miti-
gate the ability of the server to collect user-behavior information, or to make the server
function auditable. For an overview of measures and mechanisms that can be used to
del with privacy issues concerning back-end servers we refer the reader to [18]. In this
paper however, we shall not investigate such privacy attacks, and instead consider the
servers to be entirely trusted.

2.2 The role of forward-security

In this section, we provide several reasons why considerations of key-compromise are
important in the context of RFIDs.

Forward privacy – In authentication protocols that are intended to provide privacy,
forward-security implies that the privacy of earlier sessions can be preserved even after
a key compromise. This is particularly important if it is possible for covert readers
to exploit the vulnerability of tags to side-channel attacks, surreptitiously recovering
keys—such attacks are easily deployed against current tag architectures, as shown by
Oren and Shamir [14].

Key compromise detection/mitigation – To achieve forward-security in the realm of
symmetric-key cryptography, it becomes necessary for keys to be updated regularly. In
practice, this can be accomplished through replacement of authentication with authenti-
cated key exchange protocols, where the older key is replaced by the newly exchanged

one. Such protocols have the side-effect of revoking the older key. In the case of a secret
key being compromised, there will exist two or more copies of the key, and in suitably
designed schemes, these copies will diverge after interactions with legitimate readers.
If the original tag is the first to then interact with a legitimate reader, the cloned keys
will be revoked, automatically recovering the system to a safe state. If, on the other
hand, a cloned tag interacts with the system, the original tag will be revoked, which will
cause its authentication to fail in the next interaction with a legitimate reader. While an
undesirable outcome, this can provide evidence of tampering. Once such tampering is
detected, measures can be taken to recover the system to a safe state.

Flexibility of trust design – One of the difficulties of designing authentication proto-
cols for RFIDs, whether or not privacy is a concern, is that symmetric cryptography—
often the only type that can be implemented in tags—requires centralization of trust. A
typical assumption is that the readers act as enablers, and either relay communication in
real-time to a (possibly replicated) central server, or batch the interaction for later veri-
fication. However, in some cases, it would be beneficial to allow readers to store keys of
tags to allow for immediate, off-line authentication. A legitimate concern in this setting
is what happens after a reader is compromised, allowing the recovery of a large number
of tag keys. In a protocol that does not provide for forward-security such a compromise
can be very damaging. In a forward-secure symmetric-key scheme, while this situation
is still a serious breach, at least the protocol provides an automated process for key re-
vocation and update. We remark, however, that if the protocol must support large-scale
key-revocation services, then forward-security mechanisms are probably insufficient—
as the determination of which tag to have its key updated and which to have it revoked
will require an out-of-band mechanism and private interaction—and should be comple-
mented with a secondary secure channel, e.g., by using a second shared key dedicated
to this purpose.

Mitigation of key compromise and flexibility of trust are two reasons why forward-
security may strengthen security guarantees for the lifetime of tags. On the other hand,
forward-privacy is in general a long-term concern. For instance, if RFIDs have been
used to authenticate persons, vehicles, or to track sensitive shipments of goods, even if
the keys are compromised after the end of the tag lifetime—e.g., by improper discarding
of the tag—it may lead to re-construction of a person’s or vehicle’s movements in the
past, or to reconstruct the distribution path of a strategic shipment. Therefore it may
be important for the system to provide for security “beyond the grave,” which is the
primary rationale for use of forward-secure mechanisms.

2.3 Supporting availability

Forward-security is only one of the aspects that we subsume under the label of persistent
security. The other, and is many ways more critical, aspect of persistent security is to
ensure that the tags will not be disabled through interaction with malicious readers, and
will be able to perform their functions until the end of its natural life-time.

Availability is not trivial to achieve in the context of RFID authentication. For in-
stance, privacy concerns often require that tags use pseudo-random values or other mu-
table pseudonyms, avoiding repeating responses that could be used by an adversary

to link different interactions with the same tag. In the symmetric-key setting, these
pseudonyms must somehow be synchronized with the central server to allow for effi-
cient recognition of tags. If the adversary is somehow successful in de-synchronizing
tags from the central server, the tags may be permanently disabled. Some very inge-
nious protocols [19, 20] that provide for robust privacy guarantees are thus vulnerable
to disabling attacks.

Another source of threats to availability is the common support of kill-keys. If the
disabling functionality is not protected by authentication, it opens an obvious channel
for an adversary to cause massive disruption through large-scale disabling of tags. It is
also not always appropriate to disable a tag by simply disclosing a (long-term) shared
authentication key. For instance, if the protocol does not provide for forward-security,
adversarial eavesdropping of the killing interaction will compromise the security of all
past tag authentication sessions.

3 The UC Framework in the RFID Application Setting

When working with RFID systems, it is important to keep in mind that they are often
components of a larger ubiquitous computing architecture, and that therefore it is im-
portant to design their protocols for modular deployment, facilitating re-use in other
contexts. Therefore, it is appropriate to consider security issues related to concurrent
executions and to modular composition of protocols. One approach to provide for com-
posable security properties is to formalize security within the Universal Composability
(UC) framework, which we describe in this section. We also outline our contribution
to the formalization and design of persistent security mechanisms for RFID, originally
introduced in [4]. This includes a UC authentication framework that extends a model
in [3] to include forward-anonymity and a protocol—described in Section 4—that pro-
vides for forward-anonymous authentication and that guarantees availability. A signifi-
cant characteristic of this persistently secure protocol is its liteness: As the only required
security primitive is a pseudo-random function, it can be implemented through various
constructions that can be highly optimized, as we describe in Section 5.

3.1 UC security generalities

UC security is based on notions of interactive indistinguishability of real from ideal
protocol executions. This approach requires the following components:

1. A mathematical model of real protocol executions, where honest parties are rep-
resented by probabilistic polynomial-time Turing machines (PPT) that correctly
execute the protocol as specified, and adversarial parties that can deviate from the
protocol in an arbitrary fashion. The adversarial parties are controlled by a single
PPT adversary that (1) has full knowledge of the state of adversarial parties, (2) can
arbitrarily schedule the communication channels and activation periods of all par-
ties, both honest and adversarial, and (3) interacts with the environment in arbitrary
ways, in particular can eavesdrop on all communications.

2. An idealized model of protocol executions, where the security properties do not
depend on the correct use of cryptography, but instead on the behavior of an ideal
functionality, a trusted party that all parties may invoke to guarantee correct exe-
cution of particular protocol steps. The ideal-world adversary is controlled by the
ideal functionality, to reproduce as faithfully as possible the behavior of the real
adversary.

3. A proof that no environment can distinguish (with better than negligible accuracy)
real- from ideal-world protocol runs by observing the system behavior, including
exchanged messages and outputs computed by the parties (honest and adversarial).
The proof works by translating real-world protocol runs into the ideal world.

In the UC framework, the protocol execution context is captured by a session identi-
fier sid. The sid is controlled by the environment Z , and reflects external aspects of ex-
ecution, as for example, temporal and/or locational issues, shared attributes and/or keys,
etc. All parties involved in a protocol execution instance share the same sid. In partic-
ular, the security proof cannot make any assumptions about extraneous knowledge that
may or not be available to Z through interactions with other entities (including other
instances of the protocol). The environment Z is the first party to become active in any
simulation, and it activates the adversary next. If the adversary (and all other parties)
become inactive, control passes to the environment. The adversary and Z may interact
in arbitrary ways, and the real-world simulation halts when the environment halts.

Observe that the ideal functionality security is unconditional, and does not rely on
any cryptographically primitives that are computationally secure. This is because, in
the UC framework, the security supports concurrent executions. It does not follow from
this, however, that the security of the real protocol is unconditional, because we only
provide for computational indistinguishability of protocol runs in the real world from
their simulated counterparts in the ideal world.

3.2 The composable security model for persistent security in RFID

Entity authentication is a process in which one party is assured of the identity of another
party by acquiring corroborative evidence. Anonymous authentication is a special type
of entity authentication where the identities of the communication parties remain private
to third parties that may eavesdrop on their communication or even invoke and interact
with the parties. In the UC framework, it is captured by the parties having ideal access
to an anonymous entity authentication functionality, which we denote by Faauth. This
functionality is presented in Figure 1.

There are two types of protocol parties, server and tag. In each session, there
is a single instance of a party of type server and arbitrarily many instances of type
tag. The function type(p) returns the type of party p in the current session. The UC
entities, such as adversary A and the environment Z , are not parties per se, though the
A may control several protocol parties. A single session spans the complete life-time
(simulation instance) of our authentication scheme. It consists of many concurrent sub-
sessions, which are initiated by protocol parties upon receiving input INITIATE from the
environment Z . While the server and tags initiate subsessions, the adversary controls
the concurrency and interaction between these subsessions.

Functionality Faauth

Faauth has session identifier sid and only admits messages with the same sid.

Upon receiving input INITIATE from protocol party p : if party p is corrupted then ignore
this message. Else generate a unique subsession identification s, record init(s, p) and
send init(s, type(p), active(p)) to the adversary.

Upon receiving message ACCEPT(s, s′) from the adversary: if there are two records
init(s, p) and init(s′, p′) such that parties p and p′ are feasible partners, then re-
move these records, record partner(s′, p′, s, p) and write output ACCEPT(p′) to party
p. Else if there is a record partner(s, p, s′, p′) then remove this record and write output
ACCEPT(p′) to party p.

Upon receiving message IMPERSONATE(s, p′) from the adversary: if there is a record
init(s, p) and party p′ is corrupted then remove this record and write output
ACCEPT(p′) to p.

Upon receiving message CORRUPT(s) from the adversary: if there is a record init(s, p)
or partner(s, p, s′, p′) such that p is corruptible then mark p as corrupted and remove
state(p).

Fig. 1. Ideal anonymous authentication

Two protocol parties are feasible partners in authentication if they are, respectively,
a server and a tag. Upon successful completion of a subsession, each party accepts its
corresponding partner as authenticated. The environment Z may read the output tapes
of the tags and server at any moment during the session, which terminates when the
environment Z stops. The environment Z may contain many other sessions of arbitrary
protocols, thus allowing our protocol to start and run concurrently with arbitrary others.
All parties involved in a subsession of the authentication scheme are given a unique
session identifier sid by the environment Z .

A careful reading of the definition of Faauth will satisfy the reader that it simultane-
ously provide for the following security properties:

Authenticity: Results from invocations of the command ACCEPT, one for each partner.
The true identity of the partner is given to the authenticating parties, regardless of the
action of the adversary. This limits the adversary to invocation of the protocols and
scheduling of the output of each party only.

Anonymity: The only information revealed to the adversary by the functionality is the
type of the party, whether it is a tag or server. The difference between tag and
server is observable since the real server always starts the protocol, and accordingly
the ideal runs emulate this behavior.

Forward-security: The effect of corruption in the ideal world, via command CORRUPT,
is that the adversary can impersonate tags, using the IMPERSONATE command. The
adversary may also link all incomplete subsessions of the same corrupted party, up to
the last one that completed successfully, by acquiring knowledge of active(p)—the

list of identifications of all preceding incomplete subsessions, obtainable via command
INITIATE. However, once a subsession is successfully completed in the ideal world,
this subsession and all earlier subsessions of the same party are protected against all
future corruptions of any party. Therefore, the ideal world provides forward-security
only for completed subsessions. Note that, in the functionality, state(p) is the list of
all subsession records maintained by the functionality concerning party p in the current
session. This list is removed from the memory of ideal functionality upon corruption of
the tag p, and effectively leaves control of the corrupted tag to the adversary. The only
information retained is the fact that p is corrupted.

Availability: No interface is provided to the ideal adversary to disable tags, except by
corrupting them. In the Byzantine model, the adversary can effectively always deny
service by indefinitely delaying delivery of messages, and this is intrinsically available
in the ideal world; however such denial-of-service requires constant and omnipresent
intervention of the adversary, and is not a relevant threat in practice.

While we do not describe here the functionality for authenticated key-exchange we
note that, in the context of persistent security it must provide the additional guarantee of
(forward-secure) session-key indistinguishability. We refer the reader to [4] for details,
and also for the security proof—showing that the protocol described in the next section
realizes the functionality Faauth.

4 Protocols

We now revisit O-FRAP, an {O}ptimistic, {F}orward-secure {R}FID {A}uthentication
{P}rotocol introduced in [4]. The protocol is highly optimized for the case when the
system is not under attack. It relies on a trusted setup, namely a secure, out-of-band
initialization of the server’s database and the tags’ key-storage with shared keys for
symmetric cryptographic primitives, to be described in further detail in Section 5.

These protocols are lightweight enough for RFID deployments, yet provide strong
UC security and therefore are suitable in other ubiquitous application contexts, such
as sensor networks. The only restriction is that the each component playing the role
of a single tag must use separate keys when performing parallel authentications/key-
exchanges, as we have not modeled concurrency of (honest) tag behavior.

4.1 Trusted Setup and the Server Database

The following trusted setup is done in a physically secure environment. For each tag, a
fresh, unique key pair (r, ka) is randomly generated and stored both at the tag and the
server. The value r is a one-time-use pseudonym for the tag that is used for optimistic
key-retrieval, while the value ka is the tag’s authentication key (updated after each
successful authentication).

The tag stores the key pair in its non-volatile (re-writable) memory, while the server
initializes a database D whose entries are of the form 〈i, previousi, currenti〉. At
setup, previousi = (⊥,⊥), while currenti = (ri, k

a
i). The server must maintain

two key pairs for each tag to preserve consistency though key updates in the presence

of active adversaries: Since the server computes the updated triple before the tag, an
adversary could tamper with the communication channel and prevent the tag from com-
puting the updated key. During an authentication attempt by the tag i, the server detects
whether the tag is using previousi or currenti. If the tag uses currenti, the server
will replace previousi with currenti and currenti with a newly computed value. If
the tag uses previousi instead, then currenti is replaced with newly computed value,
while previousi is preserved. This operation is denoted D.update(i).

We assume that the database is (doubly) indexed by the values of the previous ri,
denoted previousi(r), and the current ri, denoted currenti(r). Therefore, database en-
tries 〈i, previousi, currenti〉 can be efficiently retrieved from either value. We denote
this operation by D.retrieve(r).

4.2 RFID entity authentication

In O-FRAP, In this protocol, rsys and rtag are values generated pseudo-randomly by
the server and the tag, respectively, so as to anonymize the session and to prevent re-
plays. The value rtag is generated pseudo-randomly for optimistic identification of the
tag, while ka

tag is the tag’s current key and is updated by the server after the tag is
authenticated, and by the tag after the server is authenticated.

On activation by the server, the tag computes four values ν1, ν2, ν3, ν4 by applying
the pseudo-random function F to (ka

tag , rtag ||r′sys). We use the following convention:
If the sender writes the value x to a channel, it is observed as x′ by the receiver. The
value x′ may differ from x if corrupted by the adversary while in transit.

In O-FRAP, ν1 is used to update the pseudo-random value rtag ; ν2 is used for au-
thentication of the tag; ν3 is used to authenticate the server; ν4 is used to update ka

tag .
In our protocols we use the following convention: the four values computed by the
server by applying the pseudo-random function F to (ka

j , r′tag‖rsys) are denoted by
ν∗
1 , ν∗

2 , ν∗
3 , ν∗

4 . When the adversary is passive, these values correspond to the non-starred
values. In particular ν∗

2 = ν′
2 and ν∗

3
′ = ν3, and the server and tag output ACCEPT.

Observe that the tag key ka
tag is updated after each server authentication, giving

strong separation properties between sessions. In particular, if a tag is compromised, it
cannot be linked to transcripts of earlier sessions. This guarantees forward-anonymity.

5 Implementation details

O-TRAP requires only the use of pseudo-random functions (PRFs). This results in a
very flexible architecture since a variety of well-known and validated PRF construc-
tions are established. Efficiency vs. security trade-offs in this architecture are easily
achieved, as key-size and pseudo-randomness (estimated as the logarithmic length of
the PRF cycle) can be chosen to the granularity of individual bits. Here we discuss two
implementation strategies based on different PRF instantiations.

Using a well-known technique by Goldreich et. al. [21], it is possible to build a PRF
that makes a call to a pseudo-random generator (PRG) per bit of input processed. In
turn, a very efficient PRG implementation can be achieved using linear feedback shift
registers, such as the self-shrinking generator [22]. This results in a small number of

Fig. 2. O-FRAP: Optimistic Forward-secure RFID entity Authentication.

SERVER(D) TAG(rtag , k
a
tag)

generate random rsys

rsys -

receive r′sys ; ν ← F (ka
tag , rtag‖r′sys)

(ν1, ν2, ν3, ν4)
parse←− ν; (rtag , rtag)← (rtag , ν1)

rtag‖ν2�

receive (r′tag‖ν′2)
if D.retrieve(r′tag) returns 〈i, previousi, currenti〉
SearchRange ← [i, i]; else SearchRange ← [1, n]

for j in SearchRange

and instance in {previous, current} do
ν∗ ← F (instancej(k

a), r′tag ||rsys)

(ν∗1 , ν∗2 , ν∗3 , ν∗4)
parse←− ν∗

if ν′2 = ν∗2 then output ACCEPT(tag(j))

D.update(j)

ν∗3 -

receive ν∗3
′;

if ν3 = ν∗3
′ then output ACCEPT(server); ka

tag ← ν4

bit operations per input and output bits. Moreover, the entire footprint of the implemen-
tation can be fixed to require fewer than 2K gates to achieve 128-bit security [23], a
range feasible for many RFID architectures (and within the EPC class 2 constraints). A
recently proposed implementation has achieved 128-bit security with only 1435 logic
gates within 517 clock cycles and 64B memory [24].

Block ciphers can similarly be used to implement PRFs through a number of stan-
dard constructions [25]. When used only as PRFs, these constructions are in practice
more efficient (in particular with regards to footprint) than security algorithms that re-
quire protocol parties to perform both encryption and decryption operations. Recently,
a highly optimized implementation of the Advanced Encryption Standard (AES) [26]
block cipher algorithm has been achieved which is suitable for RFID tags [27]. An
RFID architecture using this implementation was proposed in [28], with footprint equal
to 3,400 gates (in this implementation, gate complexity is based on 2-input NAND
gates, called gate equivalents), and mean current consumption equal to 8µA at 100kHz
and within 1032 clock cycles. Such implementations are more efficient than achievable
by hash-based protocols, as demonstrated in [29].

6 Conclusion

Despite the constraints imposed by RFID technology, it remains possible to design
provably secure mutual authentication protocols that are feasible to implement and that
support persistent security. The solutions described herein have been analyzed for their
security within a composable, modular framework that provides confidence in their re-
usability in new contexts.

References

1. Avoine, G.: Security and privacy in RFID systems. http://lasecwww.epfl.ch/
∼gavoine/rfid/ (2002–)

2. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via insubvertible en-
cryption. In: Proc. ACM Conf. on Computer and Communication Security (ACM CCS
2005), ACM Press (2005) 92–101

3. Burmester, M., van Le, T., de Medeiros, B.: Provably secure ubiquitous systems: Universally
composable RFID authentication protocols. E-print report 2006/131, International Associa-
tion for Cryptological Research (2006)

4. van Le, T., Burmester, M., de Medeiros, B.: Universally composable and forward-secure
RFID authentication and authenticated key exchange. In: Proc. of the ACM Symp. on Infor-
mation, Computer, and Communications Security (ASIACCS 2007), ACM Press (2007)

5. Juels, A., Weis, S.A.: Defining strong privacy for RFID. E-print report 2006/137, Interna-
tional Association for Cryptological Research (2006)

6. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: Proc. Advances
in Cryptology (CRYPTO 1989). Volume 435 of LNCS., Springer (1989) 589–590

7. Beaver, D.: Secure multi-party protocols and zero-knowledge proof systems tolerating a
faulty minority. Journal of Cryptology 4:2 (1991) 75–122

8. Beaver, D.: Foundations of secure interactive computing. In: Proc. Advances in Cryptology
(CRYPTO 1991). Volume 576 of LNCS., Springer (1991) 377–391

9. Canetti, R.: Studies in Secure Multiparty Computation and Application. PhD thesis, Weiz-
mann Institute of Science, Rehovot 76100, Israel (1995)

10. Canetti, R.: Security and composition of multi-party cryptographic protocols. Journal of
Cryptology 13:1 (2000) 143–202

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: Proc. IEEE Symp. on Foundations of Computer Science (FOCS 2001), IEEE Press (2001)
136–145

12. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive sys-
tems. In: Proc. ACM Conf. on Computer and Communication Security (ACM CCS 2000),
ACM Press (2000) 245–254

13. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application
to secure message transmission. In: Proc. IEEE Symp. on Security and Privacy (S & P 2001),
IEEE Press (2001) 184–200

14. Oren, Y., Shamir, A.: Power analysis of RFID tags. Invited talk, RSA Conference, Cryptog-
rapher’s Track (RSA-CT 2006). Available at http://www.wisdom.weizmann.ac.
il/∼yossio/rfid (2006)

15. EPC Global: EPC tag data standards, vs. 1.3. http://www.epcglobalinc.org/
standards/EPCglobal Tag Data Standard TDS Version 1.3.pdf (2006)

16. ISO/IEC: Standard # 18000 – RFID air interface standard. http://www.
hightechaid.com/standards/18000.htm (2004)

17. Burmester, M., van Le, T., de Medeiros, B.: Provably secure ubiquitous systems: Universally
composable RFID authentication protocols. In: Proceedings of the 2nd IEEE/CreateNet
International Conference on Security and Privacy in Communication Networks (SE-
CURECOMM 2006), IEEE Press (2006)

18. Sharma, S.E., Wang, S.A., Engels, D.W.: RFID systems and security and privacy implica-
tions. In: Proc. of the Workshop on Cryptographic Hardware and Embedded Systems (CHES
20002). Volume 2523 of LNCS., Springer (2003) 454–469

19. Avoine, G., Oechslin, P.: A scalable and provably secure hash-based RFID protocol. In:
Proc. IEEE Intern. Conf. on Pervasive Computing and Communications (PerCom 2005),
IEEE Press (2005) 110–114

20. Dimitriou, T.: A lightweight RFID protocol to protect against traceability and cloning at-
tacks. In: Proc. IEEE Intern. Conf. on Security and Privacy in Communication Networks
(SECURECOMM 2005), IEEE Press (2005)

21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct pseudorandom functions. Journal
of the ACM 33 (1986)

22. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Proc. Advances
in Cryptology (CRYPTO 1993). LNCS, Springer (1994) 22–39

23. Batina, L., Lano, J., Mentens, N., Örs, S.B., Preneel, B., Verbauwhede, I.: Energy, perfor-
mance, area versus security trade-offs for stream ciphers. In: The State of the Art of Stream
Ciphers, Workshop Record, ECRYPT (2004)

24. Lee, H., Hong, D.: The tag authentication scheme using self-shrinking generator on RFID
system. Transactions on Engineering, Computing, and Technology 18 (2006) 52–57

25. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric
encryption. In: Proc. IEEE Symp. on Foundations of Computer Science (FOCS 1997), IEEE
Computer Society Press (1997)

26. Daemen, J., Rijmen, V.: The design of rijndael. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2002)

27. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. IEE
Proceedings on Information Security 152 (2005) 13–20

28. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems
using the AES algorithm. In: Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2004). Volume 3156 of Lecture Notes in Computer Science.,
Springer (2004) 357–370

29. Feldhofer, M., Rechberger, C.: A case against currently used hash functions in RFID pro-
tocols. In: Proceedings of the On-The-Move Confederated International Workshops (OTM
2006). Volume 4277 of Lecture Notes in Computer Science., Springer (2006)

